首页> 外文OA文献 >Resource-constrained decentralized active sensing for multi-robot systems using distributed Gaussian processes
【2h】

Resource-constrained decentralized active sensing for multi-robot systems using distributed Gaussian processes

机译:使用分布式高斯过程的多机器人系统的资源受限分散主动感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of area coverage for robot teams operating under resource constraints, while modeling spatio-temporal environmental phenomena. The aim of the mobile robot team is to avoid exhaustive search and only visit the most important locations that can improve the prediction accuracy of a spatio-temporal model. We use a Gaussian Process (GP) to model spatially varying and temporally evolving dynamics of the target phenomenon. Each robot of the team is allocated a dedicated search area wherein the robot autonomously optimizes its prediction accuracy. We present this as a Decentralized Computation and Centralized Data Fusion approach wherein the trajectory sampled by the robot is generated using our proposed Resource-Constrained Decentralized Active Sensing (RC-DAS). Since each robot possesses its own independent prediction model, at the end of robot's mission time, we fuse all the prediction models from all robots to have a global model of the spatio-temporal phenomenon. Previously, all robots and GPs needed to be synchronized, such that the GPs can be jointly trained. However, doing so defeats the purpose of a fully decentralized mobile robot team. Thus, we allow the robots to independently gather new measurements and update their model parameters irrespective of other members of the team. To evaluate the performance of our model, we compare the trajectory traced by the robot using active and passive (e.g., nearest neighbor selection) sensing. We compare the performance and cost incurred by a resource constrained optimization with the unconstrained entropy maximization version.
机译:我们在建模时空环境现象的同时考虑了在资源约束下运行的机器人团队的区域覆盖问题。移动机器人团队的目标是避免详尽搜索,而仅访问可以提高时空模型预测准确性的最重要位置。我们使用高斯过程(GP)对目标现象的时空动态变化建模。团队中的每个机器人都被分配了一个专用的搜索区域,其中机器人自动优化了其预测精度。我们将其表示为一种分散式计算和集中式数据融合方法,其中机器人采样的轨迹是使用我们提出的资源受限的分散式主动传感(RC-DAS)生成的。由于每个机器人都具有自己的独立预测模型,因此在机器人执行任务结束时,我们会将所有机器人的所有预测模型融合在一起,以形成时空现象的全局模型。以前,所有机器人和GP都需要同步,以便可以共同训练GP。但是,这样做会破坏完全分散的移动机器人团队的目的。因此,我们允许机器人独立收集新的度量并更新其模型参数,而与团队中的其他成员无关。为了评估模型的性能,我们比较了机器人使用主动和被动(例如,最近的邻居选择)感应所跟踪的轨迹。我们将资源约束优化与无约束熵最大化版本所产生的性能和成本进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号